15 march 2016

Приложение Б

(Справочное)

Основные средства измерений геометрических параметров

для производства строительных и монтажных работ

1 Основные средства обеспечения точности разбивочных работ

Таблица Б.1

Вид разбивочных работ

Основные средства обеспечения

Классы точности по ГОСТ 21779

точности

1

2

3

4

5

6

Разбивка точек и осей в плане

Теодолиты по ГОСТ 10529:

Т1

Т2

Т5

Т30

Рулетка по ГОСТ 7502

Базисный прибор

Светодальномеры по ГОСТ 19223, МСД-1М, СП3, СТ3Н

Разбивка и передача

Нивелиры по ГОСТ 10528:

высотных

Н05, Н1

отметок

Н3

Н10

Рейки нивелирные:

РН-05, РН-1

РН-3

РН-10

Рулетка по ГОСТ 7502

Передача точек и осей по

Оптические центриры:

вертикали

ЦО-1

ЦО-30

RZL

Теодолиты по ГОСТ 10529:

15 march 2016

ГОСТ 26433.2-94

Группа Ж02

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Система обеспечения точности геометрических

параметров в строительстве

ПРАВИЛА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ПАРАМЕТРОВ

ЗДАНИЙ И СООРУЖЕНИЙ

System of ensuring geometric parameters accuracy in building.

Rules for measuring parameters of buildings and works

ОКС 91.040 ОКСТУ 2009

Дата введения 1996-01-01

Предисловие

1 РАЗРАБОТАН Санкт-Петербургским зональным научно-исследовательским и проектным институтом жилищно-гражданских зданий (СПб ЗНИПИ)

ВНЕСЕН Главным управлением стандартизации, технического нормирования и сертификации Минстроя России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве 17 ноября 1994 г.

За принятие стандарта проголосовали:

Наименование государства

Наименование органа государственного управления строительством

Азербайджанская Республика

Госстрой Азербайджанской Республики

Республика Армения

Госупрархитектуры Республики Армения

Республика Беларусь

Минстройархитектуры Республики Беларусь

Республика Казахстан

Минстрой Республики Казахстан

Кыргызская Республика

Госстрой Кыргызской Республики

Российская Федерация

Минстрой России

Республика Таджикистан

Госстрой Республики Таджикистан

3 ВВЕДЕН В ДЕЙСТВИЕ с 01.01.96 в качестве государственного стандарта Российской Федерации Постановлением Минстроя России от 20.04.95 № 18-38

4 ВВЕДЕН ВПЕРВЫЕ

1 Область применения

Настоящий стандарт устанавливает основные правила измерений геометрических параметров при выполнении и приемке строительных и монтажных работ, законченных строительством зданий, сооружений и их частей. Номенклатура параметров, измерения которых осуществляют в соответствии с настоящим стандартом, определена ГОСТ 21779 и ГОСТ 26607.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 3749-77 Угольники поверочные 90°. Технические условия

ГОСТ 5378-88 Угломеры с нониусом. Технические условия

ГОСТ 7502-89 Рулетки измерительные металлические Технические условия

ГОСТ 7948-80 Отвесы стальные строительные. Технические условия

ГОСТ 9389-75 Проволока стальная углеродистая пружинная. Технические условия

ГОСТ 10528-90 Нивелиры. Общие технические условия

ГОСТ 10529-86 Теодолиты. Общие технические условия

ГОСТ 17435-72 Линейки чертежные. Технические условия

ГОСТ 19223-90 Светодальномеры геодезические. Общие технические условия

ГОСТ 21779-82 Система обеспечения точности геометрических параметров в строительстве. Технологические допуски

ГОСТ 26433.0-85 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Общие положения

ГОСТ 26433.1-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления

ГОСТ 26607-85 Система обеспечения точности геометрических параметров в строительстве. Функциональные допуски

3 Обозначения

-

определяемый геометрический параметр;

-

измеренные длина отрезка прямой линии, горизонтальный и вертикальный углы, соответственно;

-

отсчет по шкале рулетки, линейки, рейки, взятый по риске (ориентиру) на конструкции, сетке нитей зрительной трубы, нитке или острию отвеса и другому отсчетному устройству

-

отсчеты при повторном наблюдении, например, при обратной перестановке сосудов гидростатического нивелира, при втором положении вертикального круга зрительной трубы теодолита, по шкале отсчетного устройства микронивелира при его развороте на 180°, при втором горизонте нивелира и т.д.;

-

заранее известные длина или угол;

-

заданный интервал линейного размера;

-

прямоугольные координаты;

-

действительные отметка и превышение, соответственно;

и т.д.

-

номинальные значения геометрических параметров;

и т.д.

-

отклонения от номинальных значений;

-

по ГОСТ 26433.0;

-

действительные значения радиусов;

-

число секунд в радиане.

4 Требования

4.1 Общие требования к выбору методов и средств измерений, выполнению измерений и обработке их результатов - по ГОСТ 26433.0.

4.2 Измерения выполняют в соответствии со схемами, приведенными в приложении А.

Предпочтительными являются прямые измерения параметра. При невозможности или неэффективности прямого измерения выполняют косвенное измерение. В этом случае значение параметра определяют по приведенным зависимостям на основе результатов прямых измерений других параметров.

При измерениях с помощью геодезических приборов следует учитывать методики, аттестованные в установленном порядке.

4.3 Для измерения линейных размеров и их отклонений применяют линейки по ГОСТ 427 и ГОСТ 17435, рулетки по ГОСТ 7502, светодальномеры по ГОСТ 19223 и другие специальные средства измерения, аттестованные в установленном порядке.

4.4 Для измерения горизонтальных и вертикальных углов применяют теодолиты по ГОСТ 10529, для измерения вертикальных углов - оптические квадранты по действующей НТД, а для измерения углов между гранями и ребрами строительных конструкций и их элементов - угломеры по ГОСТ 5378 и поверочные угольники по ГОСТ 3749.

4.5 Для измерения превышений между точками применяют нивелиры по ГОСТ 10528 и гидростатические высотомеры.

4.6 Для измерений отклонений от вертикальности применяют отвесы по ГОСТ 7948 и теодолиты совместно со средствами линейных измерений, а также средства специального изготовления, аттестованные в установленном порядке.

4.7 Для измерения отклонений от прямолинейности (створности) и плоскостности применяют теодолиты, нивелиры, трубы визирные, а также средства специального изготовления (стальные струны, разметочный шнур, капроновые лески, плоскомеры оптические, лазерные визиры и др.) совместно со средствами линейных измерений.

4.8 Правила измерений, выполняемых штангенинструментом, нутромерами, скобами, калибрами, индикаторами часового типа, щупами, микроскопами, принимают по ГОСТ 26433.1.

4.9 Средства измерений, обеспечивающие требуемую по ГОСТ 26433.0 точность измерений, а также значения предельных погрешностей средств измерений, которые могут быть использованы при выборе средств и методов измерений, приведены в приложении Б.

Примеры расчета точности измерений, выбора методов и средств ее обеспечения приведены в приложении В.

4.10 Места измерений геометрических параметров для операционного контроля в процессе строительных и монтажных работ и приемочного контроля законченных этапов или готовых зданий и сооружений принимают в соответствии с проектной и технологической документацией. В случае отсутствия указаний в проектной и технологической документации места измерений принимают по настоящему стандарту.

4.11 Размеры помещений - длину, ширину, высоту измеряют в крайних сечениях, проведенных на расстоянии 50-100 мм от краев и в среднем сечении при размерах помещений св. 3 м не более 12 м. При размерах св. 12 м между крайними сечениями измерения выполняют в дополнительных сечениях.

4.12 Отклонения от плоскостности поверхностей конструкций и отклонения от плоскости монтажного горизонта измеряют в точках, размеченных на контролируемой поверхности по прямоугольной сетке или сетке квадратов с шагом от 0,5 до 3 м. При этом крайние точки должны располагаться в 50-100 мм от края контролируемой поверхности.

4.13 Отклонения от прямолинейности определяются по результатам измерений расстояний реальной линии от базовой прямой в трех точках, размеченных на расстояниях 50-100 мм от ее краев и в середине, или в точках, размеченных с заданным в проекте шагом.

4.14 Отклонение от вертикальности определяется по результатам измерения расстояния от отвесной базовой линии до двух точек конструкции, размеченных в одном вертикальном сечении на расстояниях 50-100 мм от верхнего и нижнего обреза конструкции. Вертикальность колонн и сооружений башенного типа контролируется в двух взаимно перпендикулярных сечениях, а вертикальность стен - в крайних сечениях, а также в дополнительных сечениях, в зависимости от особенностей конструкции.

4.15 Измерения зазоров, уступов, глубины опирания, эксцентриситетов производятся в характерных местах, влияющих на работу стыковых соединений.

4.16 Измерение отклонения элементов конструкций, а также зданий и сооружений от заданного положения в плане и по высоте выполняется в точках, расположенных в крайних сечениях или на расстояниях 50-100 мм от края.

4.17 Геодезические пункты разбивочных сетей и ориентиры осей закрепляются на местности и на строительных конструкциях знаками, обеспечивающими требуемую точность разбивочных работ и сохранность ориентиров в процессе строительства и эксплуатации (при необходимости).

4.18 В зависимости от материала, размеров, особенностей геометрической формы и назначения зданий и сооружений могут применяться также не предусмотренные настоящим стандартом средства, обеспечивающие требуемую точность измерений по ГОСТ 26433.0.

Приложение А

(Рекомендуемое)

Схемы и примеры применения средств и методов измерений

Таблица А.1

Наименование измеряемого параметра и метода измерений

Схема применения метода и средств измерений

Формула для вычисления измеряемого параметра и пояснения

1 Линейные размеры: длина, ширина, высота, глубина, пролет, зазор, межосевой размер, габаритные размеры и др.

Измеряются расстояния:

а) между двумя фиксированными точками

б) между точкой и прямой, точкой и плоскостью; между двумя параллельными прямыми или плоскостями методом построения и измерения перпендикуляра:

с помощью геодезических приборов и других средств угловых и линейных измерений

покачиванием линейки, рейки, рулетки в направлениях, обеспечивающих кратчайшее расстояние

где - начальный отсчет по шкале средства измерения в фиксированной точке;

- минимальный из отсчетов, полученных в процессе покачивания рейки

1.1 Измерение размера рулеткой, линейкой и другими средствами линейных измерений, укладываемых непосредственно в створе измеряемой линии, когда измеряемый размер:

а) меньше длины мерного прибора

где - начальный и конечный отсчеты по шкале средства измерений соответственно;

б) больше длины мерного прибора

,

где - отсчеты по рулетке задний и передний по ходу соответственно;

- сумма поправок по ГОСТ 26433.0, исключающих известные систематические погрешности из результата измерений

1.2 Измерение размера геодезическим светодальномером или радиодальномером

Вычисление по формуле, приведенной в эксплуатационной документации на данный тип дальномера

1.3 Измерение зазора:

а) линейкой

б) клиновым калибром

- отсчет по клиновому калибру

в) кронциркулем

1.4 Измерение глубины опирания:

а) линейкой в доступном месте

б) линейкой-щупом в перекрытом сечении через технологическое (например коробка электросети) или специально проделанное отверстие

1 - отверстие в несущей стене; 2 - линейка-щуп; 3 - панель перекрытия; 4 - стеновая панель

в) посредством измерений линейкой перекрытой части сечения и толщины несущей стены

,

где - известная или измеренная толщина несущей стены;

- измеренная ширина неперекрытой части сечения

г) после укладки плит перекрытий посредством измерения линейкой расстояния от риски на плите перекрытия до несущей стеновой панели; риска на плите перекрытия маркируется заранее, на фиксированном расстоянии от края плиты

,

где - известное расстояние от края плиты до фиксированной риски;

- измеренный размер

1.5 Измерение расстояния между горизонтальными плоскостями

1.5.1 Измерение рулеткой, рейкой по направлению отвесной линии

а) ;

б)

1.5.2 Измерение методом геометрического нивелирования

а) в пределах одной установки нивелира

,

где - отсчеты по задней и передней по ходу рейкам, соответственно

б) при нескольких последовательных установках нивелира

1 - нивелир; 2 - рейка

,

где - отсчеты по задней и передней по ходу рейкам, соответственно;

- номер станции

в) при измерении высоты помещения

15 march 2016

ГОСТ 28984-91

УДК 721.013:006.354 Группа Ж02

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МОДУЛЬНАЯ КООРДИНАЦИЯ РАЗМЕРОВ В СТРОИТЕЛЬСТВЕ

Основные положения

Modular size coordination in building engineering.

Basic rules

ОКСТУ 5002

Дата введения 1991-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Центральным научно-исследовательским и проектно-экспериментальным институтом промышленных зданий и сооружений (ЦНИИпромзданий) Госстроя СССР

РАЗРАБОТЧИКИ

Я.П. Ватман, канд. техн. наук (руководитель темы); М.Р. Николаев; Г.П. Володин; М.И. Иванов; Л.С. Экслер; Д.М. Лаковский; Э.И. Пищик; Л.Г. Мовшович

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного строительного комитета СССР от 10.04.91 № 16

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта

ГОСТ 21778-81

3.10

ГОСТ 21779-82

3.10

ГОСТ 21780-83

3.10

ГОСТ 26607-85

3.10

Настоящий стандарт распространяется на здания и сооружения различного назначения всех отраслей народного хозяйства.

Стандарт обязателен при разработке:

норм, стандартов и других нормативных документов, содержащих данные о регламентации размеров, применяемых для строительства;

проектов зданий и сооружений;

сортаментов, номенклатур, каталогов и проектов строительных конструкций и изделий;

сортаментов, номенклатур, каталогов и проектов оборудования зданий, заменяющего конструктивные элементы или составляющего с ними единое целое (шкафы-перегородки, встроенные шкафы, стеллажи в складах и др.), а также оборудования, размеры элементов которого .в отдельности и в сочетании с другими элементами или нормированными свободными проходами должны быть согласованы с размерами объемно-планировочных и конструктивных элементов зданий (лифты, эскалаторы, мостовые опорные, подвесные и иные краны, секционные шкафы, элементы оборудования кухонь, столы для аудиторий и др.).

Настоящий стандарт не обязателен при проектировании и строительстве зданий и сооружений:

уникальных;

экспериментальных, если такие отступления обусловлены особенностями эксперимента;

с применением изделий, размеры которых не приведены в соответствие с модульной координацией размеров в строительстве, при условии, что отступления не приведут к необходимости изменения установленных размеров других изделий;

с размерами, определяемыми специфическими видами оборудования, размеры и форма которых препятствуют применению правил модульной координации размеров в строительстве;

реконструируемых, построенных ранее без соблюдения правил модульной координации в строительстве (в том числе пристраиваемых к объектам) и реставрируемых;

проектируемых полностью или частично с косоугольными и криволинейными очертаниями, причем отступления в этих случаях допускаются только в той мере, в которой это необходимо в связи с особенностями формы;

с размерами, установленными специальными международными соглашениями.

Стандарт устанавливает основные положения модульной координации размеров в строительстве зданий и сооружений, являющейся одной из основ унификации и стандартизации размеров в строительстве для обеспечения взаимосогласованности, взаимозаменяемости и ограничения количества типоразмеров строительных изделий и элементов оборудования.

Принятые в стандарте специальные термины и пояснения приведены в приложении.

1. ОБЩИЕ УКАЗАНИЯ

1.1. Модульная координация размеров в строительстве (МКРС) должна осуществляться на базе модульной пространственной координационной системы и предусматривать предпочтительное применение прямоугольной модульной пространственной координационной системы (черт. 1).

Прямоугольная модульная пространственная координационная система

- коэффициенты кратности модулей в плане и по высоте здания (сооружения)

Черт. 1

При проектировании зданий, сооружений, их элементов, строительных конструкций и изделий на основе модульной пространственной координационной системы применяют горизонтальные и вертикальные модульные сетки на соответствующих плоскостях этой системы.

1.2. МКРС устанавливает правила назначения следующих категорий размеров:

основных координационных размеров: шагов () и высот этажей () зданий и сооружений;

координационных размеров элементов: длины (), ширины (), высоты (), толщины, диаметра ();

конструктивных размеров элементов: длины (), ширины (), высоты (), толщины, диаметра ().

2. МОДУЛИ И ПРЕДЕЛЫ ИХ ПРИМЕНЕНИЯ

2.1. Для координации размеров принят основной модуль, равный 100 мм и обозначенный буквой М.

2.2. Для назначения координационных размеров объемно-планировочных и конструктивных элементов, строительных изделий, оборудования, а также для построения систематических рядов однородных координационных размеров должны применяться наряду с основным следующие производные модули (черт. 2):

укрупненные модули (мультимодули) 60М; 30М; 15М; 12М; 6М; 3М, соответственно равные 6000; 3000; 1500; 1200; 600; 300 мм;

дробные модули (субмодули) М; М; М; М; М; М, соответственно равные 50; 20; 10; 5; 2; 1 мм.

Укрупненный модуль 15М допускается при необходимости дополнения ряда размеров, кратных 30М и 60М, при наличии технико-экономических обоснований.

Взаимосвязь между модулями различной крупности

Черт. 2

2.3. Производные модули, указанные в п. 2.2, следует применять до следующих предельных координационных размеров объемно-планировочного элемента, строительной конструкции, изделия или элемента оборудования:

60М - в плане и по высоте без ограничения;

30М - в плане до 18000 мм, при технико-экономических обоснованиях - без ограничения; по высоте - без ограничения;

15М - в плане до 18000 мм; по высоте - без ограничения;

12М - в плане до 12000 мм; по высоте - без ограничения;

6М - в плане до 7200 мм; по высоте - без ограничения;

3М - в плане и по высоте до 3600 мм, при технико-экономических обоснованиях в плане - до 7200 мм, по высоте -без ограничения;

М - по всем измерениям в пределах до 1800 мм;

М - то же, до 600 мм;

М - то же, до 300 мм;

М - по всем измерениям в пределах до 150 мм;

М - то же, до 100 мм;

М - то же, до 50 мм;

М - то же, до 20 мм.

Принятые пределы применения модулей необязательны для аддитивных (слагаемых) координационных размеров конструктивных элементов.

Допускается применение высот этажей 2800 мм, кратных модулю М, за установленным для него пределом.

2.4. Укрупненные модули для размеров в плане каждого конкретного вида зданий, его планировочных и конструктивных элементов, проемов и т. д. должны составлять группу, выбранную из общего ряда, установленного п. 2.2, таким образом, чтобы каждый относительно больший модуль был кратен всем меньшим, чем достигается совместимость членений модульных сеток (черт. 3).

Пример группировки укрупненных модулей, обеспечивающей

совместимость модульных сеток

Черт.3

В зданиях, состоящих из отдельных связанных между собой корпусов или относительно самостоятельных частей, различных по объемно-планировочной структуре и конструктивной системе, для каждой из частей может применяться своя группа укрупненных модулей из указанных в п. 2.2.

3. КООРДИНАЦИОННЫЕ И КОНСТРУКТИВНЫЕ РАЗМЕРЫ СТРОИТЕЛЬНЫХ ЭЛЕМЕНТОВ И ЭЛЕМЕНТОВ ОБОРУДОВАНИЯ

3.1. Координационные размеры конструктивных элементов и элементов оборудования принимают равными соответствующим размерам их координационных пространств.

3.2. Координационные размеры конструктивных элементов устанавливают в зависимости от основных координационных размеров здания (сооружения).

3.3. Координационный размер конструктивного элемента принимают равным основному координационному размеру здания (сооружения), если расстояние между двумя координационными осями здания (сооружения) полностью заполняют этим элементом (черт. 4).

Черт.4

Примечание. Вместо указанных на чертеже координационных размеров , (длина) могут быть соответственно приняты , (ширина) или , (высота).

3.4. Координационный размер конструктивного элемента принимают равным части основного координационного размера здания (сооружения), если несколько конструктивных элементов заполняют расстояние между двумя координационными осями здания (сооружения) (черт.5а, б).

Черт. 5

Примечание. На чертежах 5 и 6 и (где = 1, 2, 3) имеют тот же смысл, что и в п. 1.2 для и .

3.5. Координационный размер конструктивного элемента может быть больше основного координационного размера здания (сооружения), если конструктивный элемент выходит за пределы основного координационного размера здания (сооружения) (черт. 6).

В этом случае

; (1)

. (2)

Черт. 6

3.6. Координационные размеры проемов окон, дверей и ворот, аддитивные размеры конструктивных элементов в плане и по высоте, а также размеры шагов и высот этажей в некоторых зданиях, не требующих больших объемно-планировочных элементов, назначают предпочтительно кратными укрупненным модулям 12М, 6М и 3М.

3.7. Координационные размеры, не зависящие от основных координационных размеров (например, сечения колонн, балок, толщины стен и плит перекрытий), назначают предпочтительно кратными основному модулю М или дробным модулям М, М.

3.8. Координационные толщины плитных изделий и тонкостенных элементов назначают кратными дробным модулям М, М, а ширину швов и зазоров между элементами - кратной также М и М.

3.9. Координационные размеры, кратные 3М/2 и М/2, допускаются при членении пополам координационных размеров, равных нечетному числу модулей 3М и М.

3.10. Конструктивные размеры () строительных элементов следует определять, исходя из их координационных размеров за вычетом соответствующих частей ширины зазоров (черт. 7), то есть

. (3)

Черт. 7

Размеры зазоров следует устанавливать в соответствии с ГОСТ 21778, ГОСТ 21779, ГОСТ 21780, ГОСТ 26607.

4. ПРИВЯЗКА КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ

К КООРДИНАЦИОННЫМ ОСЯМ

4.1. Расположение и взаимосвязь конструктивных элементов следует координировать на основе модульной пространственной координационной системы путем привязки их к координационным осям.

4.2. Модульная пространственная координационная система и соответствующие модульные сетки с членениями, кратными определенному укрупненному модулю, должны быть, как правило, непрерывными для всего проектируемого здания или сооружения (черт. 8а).

Прерывную модульную пространственную координационную систему с парными координационными осями и вставками между ними, имеющими размер , кратный меньшему модулю (черт. 8б, в), допускается применять для зданий с несущими стенами в следующих случаях:

1) в местах устройства деформационных швов;

2) при толщине внутренних стен 300 мм и более, особенно при наличии в них вентиляционных каналов; в этом случае парные координационные оси проходят в пределах толщины стены с таким расчетом, чтобы обеспечить необходимую площадь опоры унифицированных модульных элементов перекрытий (черт. 8в);

3) когда прерывная система модульных координат обеспечивает более полную унификацию типоразмеров индустриальных изделий, например, при панелях наружных и внутренних продольных стен, вставляемых между гранями поперечных стен и перекрытий.

4.3. Привязку конструктивных элементов определяют расстоянием от координационной оси до координационной плоскости элемента или до геометрической оси его сечения.

4.3.1. Привязку несущих стен и колонн к координационным осям осуществляют по сечениям, расположенным в уровне опирания на них верхнего перекрытия или покрытия.

4.3.2. Конструктивная плоскость (грань) элемента в зависимости от особенностей примыкания его к другим элементам может отстоять от координационной плоскости на установленный размер или совпадать с ней.

Расположение координационных осей в плане зданий

с несущими стенами

- непрерывная система с совмещением координационных осей с осями несущих стен;

- прерывная система с парными координационными осями и вставками между ними;

- прерывная система при парных координационных осях, проходящих в пределах толщины стен

Черт. 8

4.4. Привязку конструктивных элементов зданий к координационным осям следует принимать с учетом применения строительных изделий одних и тех же типоразмеров для средних и крайних однородных элементов, а также для зданий с различными конструктивными системами.

4.5. Привязку несущих стен к координационным осям принимают в зависимости от их конструкции и расположения в здании.

4.5.1. Геометрическая ось внутренних несущих стен должна совмещаться с координационной осью (черт. 9а); асимметричное расположение стены по отношению к координационной оси допускается в случаях, когда это целесообразно для массового применения унифицированных строительных изделий, например, элементов лестниц и перекрытий.

4.5.2. Внутренняя координационная плоскость наружных несущих стен должна смещаться внутрь здания на расстояние от координационной оси (черт. 9б, в), равное половине координационного размера толщины параллельной внутренней несущей стены /2 или кратное М, М или М. При опоре плит перекрытий на всю толщину несущей стены допускается совмещение наружной координационной плоскости стен с координационной осью (черт. 9г).

4.5.3. При стенах из немодульного кирпича и камня допускается размер привязки корректировать в целях применения типоразмеров плит перекрытий, элементов лестниц, окон, дверей и других элементов, применяемых при иных конструктивных системах зданий и устанавливаемых в соответствии с модульной системой.

Привязка стен к координационным осям

Черт.9

Примечания:

1. Размеры привязок указаны от координационных осей до координационных плоскостей элементов.

2. Наружная плоскость наружных стен находится с левой стороны каждого изображения.

4.6. Внутренняя координационная плоскость наружных самонесущих и навесных стен должна совмещаться с координационной осью (черт. 9д) или смещаться на размер с учетом привязки несущих конструкций в плане и особенностей примыкания стен к вертикальным несущим конструкциям или перекрытиям (черт. 9е).

4.7. Привязка колонн к координационным осям в каркасных зданиях должна приниматься в зависимости от их расположения в здании.

4.7.1. В каркасных зданиях колонны средних рядов следует располагать так, чтобы геометрические оси их сечения совмещались с координационными осями (черт. 10а). Допускаются другие привязки колонн в местах деформационных швов, перепада высот (п. 4.8) и в торцах зданий, а также в отдельных случаях, обусловленных унификацией элементов перекрытий в зданиях с различными конструкциями опор.

4.7.2. Привязку крайних рядов колонн каркасных зданий к крайним координационным осям принимают с учетом унификации крайних элементов конструкций (ригелей, панелей стен, плит перекрытий и покрытий) с рядовыми элементами; при этом в зависимости от типа и конструктивной системы здания привязку следует осуществлять одним из следующих способов:

1) внутреннюю координационную плоскость колонн смещают от координационных осей внутрь здания на расстояние, равное половине координационного размера ширины колонны средних рядов /2 (черт. 10б);

2) геометрическую ось колонн совмещают с координационной осью (черт. 10в);

3) внешнюю координационную плоскость колонн совмещают с координационной осью (черт. 10г).

4.7.3. Внешнюю координационную плоскость колонн допускается смещать от координационных осей наружу на расстояние (черт. 10д), кратное модулю 3М и, при необходимости, М или М.

В торцах зданий допускается смещать геометрические оси колонн внутрь здания на расстояние (черт. 10е), кратное модулю. 3М и, при необходимости, М или М.

Привязка колонн каркасных зданий к координационным осям

Черт. 10

Примечания:

1. Внутренние координационные плоскости стен (на чертеже показаны условно) могут смещаться наружу или внутрь в зависимости от особенностей конструкции стены и ее крепления.

2. Размеры привязок от координационных осей указаны до координационных плоскостей элементов.

4.7.4. При привязке колонн крайних рядов к координационным осям, перпендикулярным к направлению этих рядов, следует совмещать геометрические оси колонн с указанными координационными осями; исключения возможны в отношении угловых колонн и колонн у торцов зданий и деформационных швов.

4.8. В зданиях в местах перепада высот и деформационных швов, осуществляемых на парных или одинарных колоннах (или несущих стенах), привязываемых к двойным или одинарным координационным осям, следует руководствоваться следующими правилами:

1) расстояние между парными координационными осями (черт. 11а, б, в) должно быть кратным модулю 3М и, при необходимости, М или М; привязка каждой из колонн к координационным осям должна приниматься в соответствии с требованиями п. 4.7;

2) при парных колоннах (или несущих стенах), привязываемых к одинарной координационной оси, расстояние от координационной оси до геометрической оси каждой из колонн (черт 11г) должно быть кратным модулю 3М и, при необходимости, М или М;

3) при одинарных колоннах, привязываемых к одинарной координационной оси, геометрическую ось колонн совмещают с координационной осью (черт. 11д).

Примечание. При расположении стены между парными колоннами одна из ее координационных плоскостей совпадает с координационной плоскостью одной из колонн.

Привязка колонн и стен к координационным осям в местах

деформационных швов

Черт. 11

4.9. В объемно-блочных зданиях объемные блоки следует, как правило, располагать симметрично между координационными осями непрерывной модульной сетки.

4.10. В многоэтажных зданиях координационные плоскости чистого пола лестничных площадок следует совмещать с горизонтальными основными координационными плоскостями (черт. 12а).

4.11. В одноэтажных зданиях координационную плоскость чистого пола следует совмещать с нижней горизонтальной основной координационной плоскостью (черт. 12б).

В одноэтажных зданиях, имеющих наклонный пол, с нижней горизонтальной основной координационной плоскостью следует совмещать верхнюю линию пересечения пола с координационной плоскостью наружных стен.

4.12. В одноэтажных зданиях с верхней горизонтальной основной координационной плоскостью совмещают наиболее низкую опорную плоскость конструкции покрытия (черт. 12б).

4.13. Привязку элементов цокольной части стен к нижней горизонтальной основной координационной плоскости первого этажа и привязку фризовой части стен к верхней горизонтальной основной координационной плоскости верхнего этажа принимают с таким расчетом, чтобы координационные размеры нижних и верхних элементов стен были кратными модулю 3М и, при необходимости, М или М.

Модульная (координационная) высота этажа

1 - координационная плоскость чистого пола; 2 - подвесной потолок

Черт. 12

ПРИЛОЖЕНИЕ

Справочное

Термины и пояснения

Термин

Пояснение

1. Модульная координация размеров в строительстве (МКРС)

Взаимное согласование размеров зданий и сооружений, а также размеров и расположения их элементов, строительных конструкций, изделий и элементов оборудования на основе применения модулей

2. Модуль

Условная линейная единица измерения, применяемая для координации размеров зданий и сооружений, их элементов, строительных конструкций, изделий и элементов оборудования

3. Основной модуль

Модуль, принятый за основу для назначения других, производных от него модулей

4. Производный модуль

Модуль, кратный основному модулю или составляющий его часть

5. Укрупненный модуль (мультимодуль)

Производный модуль, кратный основному модулю

6. Дробный модуль (субмодуль)

Производный модуль, составляющий часть основного модуля

7. Модульная пространственная координационная система

Условная трехмерная система плоскостей и линий их пересечения с расстояниями между ними, равными основному или производным модулям

8. Координационная плоскость

Одна из плоскостей модульной пространственной координационной системы, ограничивающих координационное пространство

9. Основная координационная плоскость

Одна из координационных плоскостей, определяющих членение зданий на объемно-планировочные элементы

10. Координационная линия

Линия пересечения координационных плоскостей

11. Координационное пространство

Модульное пространство, ограниченное координационными плоскостями, предназначенное для размещения здания, сооружения, их элемента, конструкции, изделия, элемента оборудования

12. Модульная сетка

Совокупность линий на одной из плоскостей модульной пространственной координационной системы

13. Координационная ось

Одна из координационных линий, определяющих членение здания или сооружения на модульные шаги и высоты этажей

14. Привязка к координационной оси

Расположение конструктивных и строительных элементов, а также встроенного оборудования, по отношению к координационной оси

15. Модульный размер

Размер, равный или кратный основному или производному модулю

16. Координационный размер

Модульный размер, определяющий границы координационного пространства в одном из направлений

17. Основные координационные размеры

Модульные размеры шагов и высот этажей

18. Модульный шаг

Расстояние между двумя координационными осями в плане

19. Модульная высота этажа (координационная высота этажа)

Расстояние между горизонтальными координационными плоскостями, ограничивающими этаж здания

20. Конструктивный размер

Проектный размер строительной конструкции, изделия, элемента оборудования, определенный в соответствии с правилами МКРС

21. Вставка

Пространство между двумя смежными основными координационными плоскостями в местах разрыва модульной координационной системы, в том числе в местах деформационных швов

15 march 2016

Таблица Ж.3 - Значения коэффициента Va (a = 0,95)

l

К

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1,0

1

2

3

4

5

6

7

8

9

10

11

12

3

2,94

2,98

3,02

3,05

3,09

3,11

3,14

3,16

3,17

3,18

3,19

4

2,61

2,64

2,67

2,70

2,72

2,74

2,75

2,76

2,77

2,78

2,78

5

2,44

2,47

2,49

2,51

2,53

2,54

2,55

2,56

2,57

2,57

2,57

6

2,34

2,36

2,38

2,40

2,41

2,43

2,44

2,44

2,45

2,45

2,45

7

2,27

2,29

2,31

2,33

2,34

2,35

2,36

2,36

2,36

2,36

2,36

8

2,22

2,24

2,26

2,27

2,28

2,29

2,30

2,30

2,31

2,31

2,31

9

2,18

2,20

2,22

2,23

2,24

2,24

2,25

2,26

2,26

2,26

2,26

10

2,15

2,17

2,19

2,20

2,21

2,22

2,22

2,22

2,23

2,23

2,23

11

2,13

2,15

2,16

2,17

2,18

2,19

2,20

2,20

2,20

2,20

2,20

12

2,11

2,13

2,14

2,15

2,16

2,17

2,18

2,18

2,18

2,18

2,18

13

2,09

2,11

2,12

2,14

2,15

2,15

2,16

2,16

2,16

2,16

2,16

14

2,08

2,10

2,11

2,12

2,13

2,14

2,14

2,14

2,15

2,15

2,15

15

2,07

2,08

2,10

2,11

2,12

2,12

2,13

2,13

2,13

2,13

2,13

16

2,06

2,07

2,09

2,10

2,11

2,11

2,12

2,12

2,12

2,12

2,12

17

2,05

2,06

2,08

2,09

2,10

2,10

2,11

2,11

2,11

2,11

2,11

18

2,04

2,06

2,07

2,08

2,09

2,10

2,10

2,10

2,10

2,10

2,10

19

2,03

2,05

2,06

15 march 2016

УДК 624.131.4.001.4:006.354 ОКС 13.080 Ж39 ОКУСТ 5703

ГОСТ 20522-96

Межгосударственный стандарт

ГРУНТЫ

Методы статистической обработки

результатов испытаний

Предисловие

1. Разработан Государственным предприятием - Научно-ис­сле­до­вательский, проектно-изыскательский и конструкторско-тех­но­ло­ги­ческий институт оснований и подземных сооружений им. Н. М. Герсеванова (НИИОСП им. Герсеванова), Производственным и научно-исследовательским институтом по инженерным изысканиям в строительстве (ПНИИИС), Акционерным обществом "Все­рос­сий­ский научно-исследовательский институт гидротехники им. Б. Е. Веденеева" (АО "ВНИИГ им. Б. Е. Веденеева"), Государственным дорожным научно-исследовательским институтом (Союздорнии), Государственным предприятием - Инженерно-методологический центр "Стройизыскания" Российской Федерации.

Внесен Минстроем России.

2. Принят Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) 15 мая 1996 г.

За принятие проголосовали

Наименование государства

Наименование органа государственного управления строительством

Азербайджанская Республика

Госстрой Азербайджанской Республики

Республика Армения

Госупрархитектуры Республики Армения

Республика Беларусь

Минстройархитектуры Республики Беларусь

Республика Казахстан

Минстрой Республики Казахстан

Кыргызская Республика

Госстрой Кыргызской Республики

Республика Молдова

Минархстрой Республики Молдова

Российская Федерация

Минстрой России

Республика Узбекистан

Госкомархитекстрой Республики Узбекистан

3. Взамен ГОСТ 20522-75

4. Введен в действие с 1 января 1997 г. в качестве государственного стандарта Российской Федерации постанов­лением Минстроя России от 1 августа 1996 г. № 18-58.

Содержание

1. Область применения

2. Определения

3. Общие положения

4. Выделение инженерно-геологического элемента (ИГЭ) и расчетного грунтового элемента (РГЭ)

5. Вычисление нормативных и расчетных значений характе­рис­тик грунтов, представленных одной величиной

6. Вычисление нормативных и расчетных значений угла внутреннего трения и удельного сцепления грунтов

Приложение А. Вычисление сравнительного коэффициента вариации

Приложение Б. Проверка необходимости дополнительного разделения ИГЭ и возможности объединения двух ИГЭ в РГЭ

Приложение В. Вычисление нормативного и расчетного значения модуля деформации с использованием аналитической аппроксимации компрессионной кривой

Приложение Г. Вычисление нормативных и расчетных значений характеристик грунтов с использованием логарифмически нормального закона распределения

Приложение Д. Вычисление нормативного и расчетного значений характеристики при ее закономерном изменении с глубиной

Приложение Е. Вычисление нормативных и расчетных значений угла внутреннего трения и удельного сцепления по результатам испытаний грунтов при трехосном сжатии

Приложение Ж. Статистические таблицы

ГОСТ 20522-96

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ГРУНТЫ

МЕТОДЫ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

SOILS

STATISTICAL TREATMENT OF THE TEST RESULTS

Дата введения 1997-01-01

1. Область применения

Настоящий стандарт устанавливает применяемые при инженерно-геологических изысканиях, проектировании и строительстве методы статистической обработки результатов испытаний грунтов, составляющих различные грунтовые объекты (основания сооружений, склоны, массивы, вмещающие подземные сооружения, грунтовые сооружения и их элементы и т. д.).

Методы применяют для статистической обработки результатов определений физических и механических (прочностных и деформационных) характеристик всех грунтов, а также при выделении основных грунтовых единиц - инженерно-геологических и расчетных грунтовых элементов (разделы 3 и 4).

2. Определения

В настоящем стандарте применяют следующие термины.

Вероятность - числовая характеристика степени возможности появления какого-либо определенного события в тех или иных определенных условиях, которые могут повторяться неограниченное число раз, выражается в долях единицы или процентах.

Вероятности, с которыми характеристики грунтов, трактуемые, как случайные величины, принимают те или иные значения, образуют распределение вероятностей, для установления которого по выборочным данным оценивают один или несколько параметров распределения.

Доверительный интервал - интервал, вычисленный по выборочным данным, который с заданной вероятностью (доверительной) накрывает неизвестное истинное значение оцениваемого параметра распределения.

Доверительная вероятность - вероятность того, что доверительный интервал накроет неизвестное истинное значение параметра, оцениваемого по выборочным данным.

Односторонняя доверительная вероятность - вероятность того, что неизвестное истинное значение параметра не выйдет за пределы нижней (или верхней) границы доверительного интервала.

Среднее значение (выборочное) - среднеарифметическое из частных значений, образующих выборку независимых друг от друга и от пространственных координат величин.

Коэффициент вариации - мера отклонения опытных данных от выборочного среднего значения, выражаемая в долях единицы или процентах, вычисляется по формуле (5).

Сравнительный коэффициент вариации - мера изменчивости величины, зависящая от начала отсчета выборки, вычисляется по формуле (А. 1) приложения А.

Метод наименьших квадратов - метод статистической оценки функциональной зависимости путем установления таких ее параметров, при которых сумма квадратов отклонений опытных данных от этой зависимости является минимальной.

Среднеквадратическое отклонение - мера отклонения опытных данных от выборочного среднего значения или от функциональной зависимости, выражаемая в абсолютных единицах, вычисляется по формулам (4), (12).

Число степеней свободы - число независимых наблюдений, равное числу определений n характеристики минус число оцениваемых статистических параметров.

Инженерно-геологический элемент (ИГЭ) - основная грунтовая единица при инженерно-геологической схематизации грунтового объекта, определяемая положениями 3.4.

Расчетный грунтовый элемент (РГЭ) - основная грунтовая единица, выделяемая с учетом применяемого при проектировании грунтового объекта расчетного или экспериментального метода, определяемая положениями 3.4.

3. Общие положения

3.1. Статистическую обработку результатов испытаний проводят для оценки неоднородности грунтов, выделения инженерно-гео­ло­ги­чес­ких элементов (ИГЭ) и вычисления нормативных и расчетных значений характеристик грунтов.

3.2. Неоднородность грунта оценивается с помощью коэффициента вариации характеристик грунта (5.4). Для сравнения неоднородности по разным характеристикам может применяться сравнительный коэффициент вариации, определяемый по приложению А.

3.3. Статистическую обработку проводят для частных значений характеристик грунтов или фиксируемых в отдельных испытаниях величин, которые составляют случайную выборку.

При наличии закономерного изменения характеристики в каком-либо направлении (чаще всего с глубиной) статистическая обработка проводится для определения параметров аналитической зависимости, аппроксимирующей опытные точки линейной или кусочно-линейной функцией.

3.4. Статистическую обработку результатов испытаний выполняют для ИГЭ или РГЭ.

За ИГЭ принимают некоторый объем грунта одного и того же происхождения и вида при условии, что значения характеристик грунта изменяются в пределах элемента случайно (незакономерно), либо наблюдающаяся закономерность такова, что ею можно пренебречь. В последнем случае должны выполняться требования 4.5. ИГЭ наделяют постоянными нормативными и расчетными значениями характеристик. Комплекс ИГЭ образует инженерно-гео­ло­ги­чес­кую модель объекта.

За РГЭ принимают некоторый объем грунта не обязательно одного и того же происхождения и вида, в пределах которого нормативные и расчетные значения характеристик при проектировании грунтового объекта по условиям применяемого расчетного или экспериментального метода могут быть постоянными или закономерно изменяющимися по направлению (чаще всего по глубине). РГЭ может включать часть одного или несколько ИГЭ. Комплекс РГЭ образует расчетную геомеханическую модель объекта.

Примечание - Объем, местоположение и конфигурацию ИГЭ и РГЭ устанавливают с учетом геологических данных и сведений об объекте строительства.

3.5. Для всех характеристик грунта вычисляют нормативные, а для характеристик, используемых в расчетах, и расчетные значения.

Нормативные значения характеристик определяют как среднестатистические, получаемые осреднением их частных значений, или отвечающие осредненным по частным значениям аппроксимирующим зависимостям между измеряемыми в опытах величинами (или функционально с ними связанными величинами), или зависимостям каких-то из этих величин от координат по одному из направлений.

Расчетное значение получают делением нормативного значения на коэффициент надежности по грунту.

3.6. Коэффициент надежности по грунту должен устанавливаться с учетом изменчивости и числа определений характеристики (числа испытаний) при заданной доверительной вероятности.

Примечания.

1. По указаниям норм проектирования различных видов сооружений при вычислении расчетного значения характеристики могут вводиться и другие коэффициенты, учитывающие влияние факторов, которые не могут быть учтены статистическим путем.

2. Для отдельных характеристик грунтов по указаниям норм проектирования различных видов сооружений их расчетные значения могут быть приняты равными нормативным значениям.

3.7. Значения доверительной вероятности при вычислении расчетного значения характеристики грунта принимают в соответствии с рекомендациями норм проектирования различных видов сооружений.

3.8. Опытные данные, для которых проводится статистическая обработка, должны быть получены единым методом испытания.

3.9. Применяемые в настоящем стандарте методы статистической обработки используют нормальный или логарифмически нормальный закон распределения вероятностей.

3.10. Настоящие методы применяют при числе определений характеристик грунтов или фиксируемых в опытах величин не менее шести.

4. Выделение инженерно-геологического элемента (ИГЭ) и расчетного грунтового элемента (РГЭ)

4.1. Исследуемые грунты предварительно разделяют на ИГЭ с учетом их происхождения, текстурно-структурных особенностей и вида.

Характеристики грунтов в каждом предварительно выделенном ИГЭ анализируют с целью установить и исключить значения, резко отличающиеся от большинства значений, если они вызваны ошибками в опытах или принадлежат другому ИГЭ.

4.2. Окончательное выделение ИГЭ проводят на основе оценки характера пространственной изменчивости характеристик грунтов и их коэффициента вариации, а также сравнительного коэффициента вариации. При этом необходимо установить, изменяются характеристики грунтов в пределах предварительно выделенного ИГЭ случайным образом или имеет место их закономерное изменение в каком-либо направлении (чаще всего с глубиной).

Для анализа используют физические характеристики, а при достаточном количестве и механические.

Примечание - Для выделения ИГЭ наряду с физическими и механическими характеристиками грунтов могут использоваться фиксируемые в опытах величины или показатели, получаемые с помощью зондирования и других экспресс-методов.

4.3. Для оценки характера пространственной изменчивости характеристик их наносят на инженерно-геологические разрезы в точках их определения, строят графики рассеяния, а также графики зондирования. Для выявления закономерного изменения характеристик строят точечные графики изменения их значений по направлению или применяют положения 1 и 2 приложения Д.

4.4. Если установлено, что характеристики грунтов изменяются в пределах предварительно выделенного ИГЭ случайным образом, этот элемент принимают за окончательный независимо от значений коэффициента вариации (5.4) характеристик.

За единый инженерно-геологический элемент могут быть приняты грунты, представленные часто сменяющимися тонкими (менее 20 см) слоями и линзами грунтов различного вида. Слои и линзы, сложенные рыхлыми песками, глинистыми грунтами с показателем текучести более 0,75, илами, сапропелями, заторфованными грунтами и торфами, следует рассматривать как отдельные инженерно-гео­ло­ги­ческие элементы независимо от их толщины.

4.5. При наличии закономерного изменения характеристик грунтов в каком-либо направлении (чаще всего с глубиной) следует решить вопрос о необходимости разделения предварительно выделенного ИГЭ на два или несколько новых ИГЭ.

Дополнительное разделение ИГЭ не проводят, если выполняется условие

V < Vдоп, (1)

где V - коэффициент вариации (5.4);

Vдоп - допустимое значение V, принимаемое равным для физических характеристик 0,15, а для механических (см. 4.2) - 0,30.

Если коэффициенты вариации превышают указанные значения, дальнейшее разделение ИГЭ проводят так, чтобы для вновь выделенных ИГЭ выполнялось условие (1).

Разделение ИГЭ может быть проведено на основе сравнения средних значений характеристик грунта во вновь выделенных ИГЭ в соответствии с приложением Б.

4.6. При проведении дополнительного разделения первоначально выделенного ИГЭ (4.5), определяя границы вновь выделяемых ИГЭ, необходимо учитывать:

- наличие тенденции к скачкообразному изменению характеристик грунтов;

- положение уровня подземных вод;

- наличие зон просадочных, набухающих и засоленных грунтов и грунтов с примесью органических веществ;

- наличие в скальных грунтах зон разной степени выветрелости и разгрузки;

- наличие в элювиальных грунтах зон разной степени выветрелости;

- наличие зон грунтов разной консистенции;

- наличие в вечномерзлых грунтах зон разной степени льдистости и цементации льда.

4.7. Выделение РГЭ проводят на основе выделенных при инженерно-геологической схематизации ИГЭ применительно к конкретному методу расчета объекта (экспериментального метода) с наделением его конкретными характеристиками, необходимыми для возможности использования этого метода. При этом РГЭ в общем случае могут не совпадать с ИГЭ по одному или нескольким показателям (по форме, размерам, местоположению, характеристикам и их значениям).

В РГЭ могут быть также объединены два соседних ИГЭ, представленных грунтами разного происхождения, но одного вида, если выполняются требования приложения Б.

4.8. При выделении РГЭ, в пределах которых значения характеристик принимаются закономерно (не скачкообразно) изменявшимися по направлению (например, по глубине) оценку этой изменчивости производят с использованием положений 1 и 2 приложения Д, а критерием возможности выделения РГЭ является условие (1), в котором коэффициент вариации вычисляется по формуле (Д.3) приложения Д. Если условие (1) не выполняется, то проводят разделение РГЭ так, чтобы выполнялось условие (1).

5. Вычисление нормативных и расчетных значений характеристик грунтов, представленных одной величиной

5.1. Определение нормативных Хn и расчетных Х значений характеристик грунтов для ИГЭ и РГЭ в случае принятия для последнего постоянных значений Хn и Х следует проводить в соответствии с 5.2-5.7. Для РГЭ при закономерном изменении характеристик по направлению (чаще всего по глубине) их нормативные и расчетные значения следует определять в соответствии с 5.8.

5.2. Нормативное значение Xn всех физических (влажности, плотности, пластичности и т. п.) и механических характеристик грунтов (модуля деформации, предела прочности на одноосное сжатие, относительных просадочности и набухания и т. п.) принимают равным среднеарифметическому значению и вычисляют по формуле

, (2)

где n - число определений характеристики;

Xi - частные значения характеристики, получаемые по результатам отдельных i-х опытов.

Примечание - Для физических характеристик грунтов, вычисляемых по формулам (коэффициент пористости, число пластичности и др.) в зависимости от величин, определяемых опытным путем, и для компрессионного модуля деформации (приложение В) их нормативные значения могут быть установлены исходя из нормативных значений измеренных в опытах величин.

5.3. Выполняют статистическую проверку для исключения возможных ошибок, оставшихся после анализа опытных данных в соответствии с 4.1. Исключают то частичное (максимальное или минимальное) значение Хi, для которого выполняется условие

, (3)

где v - статистический критерий, принимаемый в зависимости от числа определений n характеристики по таблице Ж.1 приложения Ж;

S - среднеквадратическое отклонение характеристики, вычисляемое по формуле

(4)

Если какое-либо значение характеристики исключено, следует для оставшихся опытных данных заново вычислить Хn по формуле (2) и S по формуле (4).

5.4. Вычисляют коэффициент вариации V характеристики и показатель точности ее среднего значения ra по формулам:

, (5)

, (6)

где ta - коэффициент, принимаемый по таблице Ж.2 приложения Ж в зависимости от заданной односторонней доверительной вероятности a и числа степеней свободы К = n - 1.

5.5. Вычисляют коэффициент надежности по грунту gg по формуле

. (7)

Примечание - Знак перед величиной ra принимают таким, чтобы обеспечивалась большая надежность основания или сооружения.

5.6. Вычисляют расчетное значение Х характеристики грунта по формуле

. (8)

Примечание - В формулах (6)-(8) вместо a, а также в качестве индекса для Х могут быть указаны значения доверительной вероятности.

5.7. Если коэффициент вариации V характеристики (5.4) превышает 0,4, ее нормативное и расчетное значение может быть вычислено с использованием логарифмически нормального закона распределения по приложению Г.

5.8. При закономерном изменении характеристики по направлению (например, по глубине h) ее нормативные Хn(h) и расчетные Х(h) значения могут быть вычислены в пределах РГЭ по приложению Д. При этом при определении подлежащих исключению из выборки частных значений Хi (5.3) необходимо в формуле (3) заменить Хn на Xn(h), а S вычислить по формуле (Д.2) приложения Д.

6. Вычисление нормативных и расчетных значений угла внутреннего трения и удельного сцепления грунтов

6.1. Нормативные и расчетные значения угла внутреннего трения j и удельного сцепления с по результатам опытов на одноплоскостной срез вычисляют путем статистической обработки частных значений tgjj и cj (6.2-6.5) или путем статистической обработки всех пар опытных значений сопротивления срезу ti и нормального напряжения si как единой совокупности (6.6-6.12). Второй из указанных способов должен использоваться согласно соответствующим нормам проектирования для систем, включающих гидротехнические и (или) энергетические сооружения.

Примечания.

1. Число определений частных значений tgjj и cj в первом способе и число определений пар ti и si во втором способе должно быть не менее шести.

2. Методика статистической обработки результатов испытаний грунтов при трехосном сжатии приведена в приложении Е.

6.2. При статистической обработке частных значений tgjj и cj для каждой j-й точки испытания грунта в пределах ИГЭ вычисляют по методу наименьших квадратов частные значения tgjj и cj по результатам не менее трех определений сопротивления грунта срезу ti при различных значениях нормального напряжения si в пределах одинакового диапазона si:

, (9)

, (10)

где k - число определений t в каждой точке ИГЭ.

Если при вычислении по формуле (10) получается сj < 0, то принимают сj = 0, а tgjj вычисляют по формуле

. (11)

6.3. По найденным значениям tgjj и сj вычисляют нормативные значения tgjn и сn по формуле (2) и среднеквадратические отклонения Stgj и Sс по формуле (4).

6.4. Выполняют статистическую проверку для исключения возможных ошибок в значениях tgjj и сj в соответствии с 5.3. Пару значений tgjj и сj исключат, если хотя бы для одного из них выполняется условие (3). При этом для оставшихся опытных данных следует заново вычислить значения tgjn, сn, Stgj и Sc.

6.5. Вычисляют для tgj и с коэффициент вариации V, показатель точности ra, коэффициент надежности по грунту gg и их расчетные значения по формулам (5)-(8).

Примечание - Если по формуле (6) для tgj или с получится ra > 1, расчетное значение этой характеристики следует принять равным нулю.

6.6. При статистической обработке всех n пар опытных значений ti и si как единой совокупности нормативные значения tgjn и сn вычисляют по формулам (9) и (10), в которых значения tgjj, сj и k необходимо заменить на tgjn, cn и n соответственно.

Если при этом получится сn < 0, то принимают сn = 0, а tgjn вычисляют вновь по формуле (11), в которой необходимо заменить tgjj и k на tgjn и n соответственно.

6.7. Вычисляют среднеквадратическое отклонение сопротивления срезу St по формуле

. (12)

Примечание - В формуле (12) следует заменить n-2 на n-1, если по 6.6 принято сn = 0, а tgjn вычислен по формуле (11).

6.8. Выполняют статистическую проверку для исключения возможных ошибок в значениях ti в соответствии с 5.3.

Исключают наиболее отклоняющееся от нормативной зависимости tn = сn + stgjn значение ti для которого выполняется условие (3). При этом в условие (3) следует подставить вместо Хi проверяемое значение ti вместо Хn - соответствующее ti значение tn и вместо S - значение St из (12).

Если какое-либо значение ti - будет исключено, следует заново вычислить значения tgjn, сn и St по оставшимся опытным данным.

6.9. Расчетные значения tgj и с вычисляют с учетом заданного диапазона нормальных напряжений smin, smax, который принимается по указаниям норм проектирования различных видов сооружений. При отсутствии таких указаний следует принимать smin и smax равными минимальному и максимальному нормальным напряжениям, имевшим место при испытании грунта на срез.

Вычисляемые значения tgj и с должны сопровождаться сведениями о принятом диапазоне нормальных напряжений.

6.10. Нормативные значения сопротивления грунта срезу t¢n, t²n вычисляют по формуле (13) и значения полудлин совместных доверительных интервалов d¢t и d²t по формуле (14) при значениях нормального напряжения s = smin и s = smax:

tn = cn + stgjn, (13)

, (14)

где Va,l - коэффициент, принимаемый по таблице Ж.3 приложения Ж в зависимости от заданной односторонней доверительной вероятности a, параметра l, вычисляемого по формуле (16), и числа степеней свободы К = n - 2;

si - опытные значения нормального напряжения;

. (15)

6.11. Параметр l, учитывающий значения диапазона /smin, smax/ вычисляют по формуле

, (16)

где , (17)

. (18)

6.12. Вычисляют расчетные значения сопротивления срезу t¢ и t² по формуле (19) при нормальных напряжениях s = smin и s = smax, коэффициенты надежности по грунту gg,tgj и gg,c для tgj и c по формуле (20) и расчетные значения tgj и с по формуле (8):

t = tn - dt, (19)

. (20)

Если , то вместо формулы (20) следует использовать формулу (21)

. (21)

Приложение А

(рекомендуемое)

Вычисление

сравнительного коэффициента вариации

Сравнительный коэффициент вариации Vс вычисляют по формуле

, (A.1)

где Xn и S - то же, что и в формулах (2) и (4);

Xmin - наименьшее значение в выборке опытных данных Xi после статической проверки на исключение ошибок (5.3).

Приложение Б

(рекомендуемое)

Проверка необходимости дополнительного разделения ИГЭ и возможности объединения двух ИГЭ в РГЭ

1. Для проверки необходимости дополнительного разделения предварительно выделенного ИГЭ на два новых элемента вычисляют значение критерия t по формуле

, (Б.1)

где и - среднеарифметические значения характеристики в двух новых ИГЭ;

S1 и S2 - соответствующие им среднеквадратические отклонения;

n1 и n2 - число определений характеристики в каждом новом элементе.

2. Для проверки возможности объединения двух ИГЭ в один РГЭ вычисляют значения критериев F и t по формулам (Б.2) и (Б.1)

, (Б.2)

3. Дополнительное разделение ИГЭ необходимо, если t ³ ta.

Два ИГЭ объединяют в один РГЭ, если одновременно выполняются условия F < Fa и t < ta.

Значение ta принимают по таблице Ж.2 приложения Ж при двусторонней доверительной вероятности a = 0,95 для числа степеней свободы К = n1 + n2 - 2.

Значение Fa принимают по таблице Ж.4 приложения Ж при доверительной вероятности a = 0,95 для числа степеней свободы К1 = n1 - 1 и К2 = n2 - 1.

Приложение В

(рекомендуемое)

Вычисление нормативного и расчетного значений

модуля деформации с использованием аналитической

аппроксимации компрессионной кривой

1. Компрессионные зависимости относительной деформации e образцов грунта (коэффициента пористости) от нормального напряжения s, полученные в пределах окончательно выделенного ИГЭ, обрабатываются вместе путем аппроксимации той или иной аналитической зависимостью (логарифмической, гиперболической и другими подходящими нелинейными зависимостями). При этом нелинейную зависимость необходимо предварительно линеаризовать путем замены переменных.

Примечание - Аппроксимация может быть произведена для участка компрессионной кривой в заданном диапазоне нормальных напряжений s.

2. При использовании, например, логарифмической зависимости типа

e = a0 + a1 lns, (В.1)

входящие в нее параметры а0 и а1 вычисляют по формулам (9) и (10), в которых необходимо заменить tgjj, cj, ti, si и k на а1, а0, ei, lnsi и n соответственно, где n - общее число определений ei по всем компрессионным кривым в данном ИГЭ.

3. Для найденной нормативной зависимости (В.1) и заданного диапазона напряжений /smin, smax/ вычисляют по формулам механики грунтов нормативные значения коэффициента сжимаемости и модуля деформации.

4. Расчетные значения модуля деформации вычисляют по формуле (8), при этом коэффициент gg устанавливают так же, как указано в 6.10-6.12, используя формулы (13)-(21). В этих формулах необходимо заменить t¢n, t²n, dt, St, s, , si, smin, smax, t¢, t², и gg,tgj, на e¢n, e²n, de, Se, lns,

15 march 2016

ЖУРHАЛ

испытания мерзлого грунта методом одноосного сжатия

1 Испытание при непрерывном быстром возрастании нагрузки

Hомер образца _________________

Левая часть

Дата испытания

Температура испытания °С

Время снятия отсчета ч

Время от начала опыта ч

Характер деформирования образца

Разрушающая нагрузка кН

Диаметр образца после испытания мм

1

2

3

средний

Продолжение

Правая часть

Средняя площадь сечения образца после испытания см

Высота образца в момент разрушения мм

Условно-мгновенное сопротивление одноосному сжатию МПа

Примечание

2 Испытание на ползучесть

Hомер образца _________________

Левая часть

Дата испы

Температура

Время снятия

Время от

начала

Hомер ступени

Давление на образец

Отсчеты по приборам для измерения деформаций

тания

испытания

отсчета

опыта

нагружения

МПа

продольных

°С

ч

ч

1

2

среднее значение

Продолжение

Средняя часть

Отсчеты по приборам для измерения деформаций

Продольная деформация мм

Поперечная деформация

мм

Относительная продольная деформация

Относительная поперечная деформация

поперечных

1

2

3

4

5

6

среднее

значение

Продолжение

Правая часть

Средняя площадь поперечного сечения образца см

Приращение площади поперечного сечения см

Время между отсчетами ч

Приращение продольной деформации мм

Скорость продольной деформации мм/ч

Скорость относительной продольной деформации 1/ч

Примечание

ПРИЛОЖЕHИЕ Б

(рекомендуемое)

ОБРАЗЕЦ ГРАФИЧЕСKОГО ОФОРМЛЕHИЯ РЕЗУЛЬТАТОВ

ИСПЫТАHИЯ ГРУHТА МЕТОДОМ ОДHОПЛОСKОСТHОГО СРЕЗА

График

График

Масштаб графика:

Масштаб графика:

по горизонтали

по горизонтали

10 мм - 1 мм для

20 мм - 0,1 МПа для

по вертикали

по вертикали

20 мм - 0,1 МПа для

20 мм - 0,1 МПа для

Рисунок Б.1

ПРИЛОЖЕHИЕ В

(рекомендуемое)

ОПРЕДЕЛЕHИЕ ПЛОЩАДИ ДЕФОРМИРОВАHHЫХ ОБРАЗЦОВ

ГЛИHИСТЫХ ГРУHТОВ

1 Если разрушению образца предшествуют значительные деформации, необходимо при расчете предела прочности на одноосное сжатие учитывать увеличение площади образца.

Площадь определяют непосредственно измерением диаметра образца штангенциркулем с погрешностью 0,1 мм и последующим расчетом.

2 В предположении о постоянстве объема грунта при испытании

отношение может быть определено по относительной вертикальной деформации

При сохранении цилиндрической формы

Если образец после сжатия приобретает форму бочки, причем диаметр торца бочки сохраняется равным начальному диаметру образца,

ПРИЛОЖЕНИЕ Г

(рекомендуемое)

ПРИНЦИПИАЛЬНАЯ СХЕМА УСТАНОВКИ

ДЛЯ ИСПЫТАНИЯ ГРУНТА МЕТОДОМ ТРЕХОСНОГО СЖАТИЯ

1 - основание камеры; 2 - корпус камеры; 3 - вентиль для

выпуска воздуха; 4 - шток; 5 - образец грунта в оболочке;

6 - верхний штамп; 7 - нижний штамп; 8 - трубки для дренирования

и измерения давления в поровой жидкости; 9 - трубка

для заполнения камеры и измерения давления в камере;

10 - манометр; 11 - индикатор; 12 - уплотнитель

Рисунок Г.1

ПРИЛОЖЕНИЕ Д

(рекомендуемое)

ТАРИРОВКА КАМЕРЫ ТРЕХОСНОГО СЖАТИЯ

1 Тарировка камеры на сжатие

Для тарировки между штампами, покрытыми влажными бумажными фильтрами, помещают металлический вкладыш размерами, равными размерам испытываемого образца грунта. Штамп нагружают ступенями вертикального давления 0,01; 0,025; 0,05; 0,10 МПа, выдерживая их по 5 мин до максимального давления, определяемого предельными нагрузками при испытаниях грунта, на каждой ступени давления, записывают показания прибора для измерения вертикальной деформации грунта.

Тарировку производят при трехкратном нагружении и разгрузке, каждый раз с заменой фильтров на новые.

По средним из тех опытов данным составляют таблицу деформаций камеры при различных давлениях.

2 Тарировка камеры на расширение

Для тарировки на металлический вкладыш и штампы (пункт 1) надевают резиновую оболочку и закрепляют ее на боковых поверхностях штампов резиновыми или металлическими кольцами.

Камеру заполняют рабочей жидкостью и создают в ней всестороннее давление такими же ступенями, как и при тарировке на сжатие (пункт 1), выдерживая их по 30 мин. На каждой ступени давления записывают показания волюмометра.

По средним из трех опытов данным составляют таблицу объемных деформаций камеры при различных всесторонних давлениях.

3 Определение трения штока во втулке камеры

При наличии зазора между штоком и штампом в камере создают давление до момента, когда начнется движение стрелки прибора, измеряющего вертикальные деформации образца грунта. В этот момент записывают показания манометра и вычисляют усилие на 1 смплощади поперечного сечения штока.

ПРИЛОЖЕНИЕ Е

(рекомендуемое)

РАСШИРИТЕЛЬ ДЛЯ ЗАКЛЮЧЕНИЯ ОБРАЗЦА ГРУНТА

В РЕЗИНОВУЮ ОБОЛОЧКУ

1 - металлический цилиндр; 2 - резиновая оболочка;

3 - гибкая трубка к источнику разрежения;

4 - штампы; 5 - образец грунта

Рисунок Е.1

ПРИЛОЖЕНИЕ Ж

(рекомендуемое)

ОБРАЗЕЦ ГРАФИЧЕСКОГО ОФОРМЛЕНИЯ РЕЗУЛЬТАТОВ

ИСПЫТАНИЯ ГРУНТА МЕТОДОМ ТРЕХОСНОГО СЖАТИЯ

1 При определении характеристик прочности

График .

Масштаб графика: по горизонтали 10 мм - 0,02 МПа для по вертикали 10 мм - 0,01 для

График

Масштаб графика: по горизонтали 10 мм - 0,02 МПа для по вертикали 10 мм - 0,02 МПа для

2 При определении характеристик деформируемости

Графики и

Масштаб графиков: по горизонтали 10 м - 0,05 МПа для по вертикали 10 мм - 0,01 для

Рисунок Ж.1

ПРИЛОЖЕНИЕ И

(рекомендуемое)

ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА

И МОДУЛЯ ОБЪЕМНОЙ ДЕФОРМАЦИИ

1. По результатам консолидированно-дренированного и консолидированно-недренированного (с измерением давления в поровой жидкости) испытаний образцов исследуемого грунта в условиях трехосного сжатия при различных значениях постоянного всестороннего давления в камере составляют графический "паспорт" зависимостей (см.рисунок И.1)

где - интенсивность касательных напряжений;

- интенсивность деформации сдвига;

- среднее эффективное напряжение;

- объемная деформация.

Графический "паспорт" обработки результатов

испытания грунта методом трехосного сжатия

а) Для консолидированно-дренированного испытания

1, 2, 3 ..... - номера испытаний

б) Для консолидированно-недренированного испытания

1, 2, 3 .... - номера испытаний

Рисунок И.1

2. Частные значения модуля сдвига и модуля объемной деформации соответствующие различным значениям вычисляют по формулам:

где - по "паспорту испытаний".

3. Зависимость модуля сдвига от и аппроксимируется выражением

где

здесь и

- параметры графика в случае линейной зависимости;

15 march 2016

ПРИЛОЖЕHИЕ А

(рекомендуемое)

ФОРМЫ ПЕРВОЙ И ПОСЛЕДУЮЩИХ СТРАHИЦ ЖУРHАЛОВ

ЛАБОРАТОРHЫХ ИСПЫТАHИЙ ГРУHТОВ

Форма первой страницы журнала

Организация (лаборатория) ________________________________

Журнал испытаний грунта

методом ............................................................

Объект (пункт)___________________

Данные о рабочем кольце (образце):

Сооружение _____________________

Высота, мм _______________________

Шурф (скважина) № ______________

Диаметр, мм ______________________

Глубина отбора образца, м _________

Площадь, см2______________________

Лабораторный номер образца ______

Объем, см2 _______________________

Hаименование грунта _____________

Масса, г _________________________

Сложение грунта _________________

Масса с грунтом, г _______________

Визуальное описание грунта в лабора-

Масса образца,г __________________

тории __________________________

Физические характеристики грунта

Вид испытания ___________________

Прибор (тип, номер) ______________

Схема испытания _________________

Схема фильтрации ________________

Наименование характеристики

Значение

Примечание

Сведения о замачивании __________

до опыта

после опыта

Жидкость для замачивания (фильт-

рации) __________________________

Дата испытаний: начало ____________

окончание _______________________

ЖУРHАЛ

испытаний для определения сопротивления немерзлого грунта

одноплоскостному срезу и сопротивления мерзлого грунта срезу

по поверхности смерзания с материалом фундамента

Предварительное уплотнение

(немерзлых грунтов)

Hомер образца _________________

Дата

испытания

Масса

груза на

подвеске

рычага, кг

Давление

на образец МПа

Время

снятия

отсчета

ч

Показания

индикатора

вертикальных деформаций

Вертикальная

деформация

образца

мм

Относительное сжатие

(набухание)

Примечание

Срез грунта

Hомер образца _________________

Левая часть таблицы

Дата

испытаний

Температура

испытания,

°С

Время

снятия

отсчета

ч

Время от начала

опыта

ч

Давление

на образец грунта

МПа

Kасательная

нагрузка

кH

Kасательное

напряжение

МПа

Показания

индикатора деформаций

среза

ГОСТ 12248-96

Продолжение

Правая часть таблицы

Абсолютная

деформация

среза

мм

Абсолютная деформация среза с учетом поправки на трение в приборе

мм

Приращение деформации среза

мм

Скорость деформации среза

мм/сут

Температура

контрольного образца

°С

Примечание

Примечание - Температура испытаний и контрольного образца, а также скорость деформации среза указываются при испытании мерзлых грунтов.

ЖУРHАЛ

испытания грунта методом одноосного сжатия

Hомер образца _________________

Разрушающая сила МПа

Предел прочности образца грунта на одноосное сжатие МПа, в состоянии

Дата

испытания

при

природной

влажности

в воздушно-

сухом

состоянии

в водонасыщенном

состоянии

Относительная вертикальная деформация в

момент

разрушения

природной

влажности

воздушно-

сухом

водонасыщенном

Примечание

отдельного

образца

средний

отдельного

образца

средний

отдельного

образца

средний

ЖУРHАЛ

испытания грунта методом трехосного сжатия

Hомер образца _________________

Левая часть

Вертикальная нагрузка

Давление в поровой жидкости

Дата

испытания

Время

снятия

отсчета

ч

Время от

начала

опыта

ч

Давление

в камере, МПа

Hагрузка на рычаг МH,

или показания

динамометра

Площадь

образца

см

Давление

МПа

Показания по прибору

МПа

Продолжение

Правая часть